operational tau method for nonlinear multi-order fdes

نویسندگان
چکیده

this paper presents an operational formulation of the tau method based upon orthogonal polynomials by using a reduced set of matrix operations for the numerical solution of nonlinear multi-order fractional differential equations(fdes). the main characteristic behind the approach using this technique is that it reduces such problems to those of solving a system of non-linear algebraic equations. some numerical examples are provided to demonstrate the validity and applicability of the method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems

This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...

متن کامل

A SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS

In this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. Periteration this method requires three evaluations of the function and one evaluation of its first derivative. A general error analysis providing the eighth order of convergence is given. Several numerical examples are given to illustrate the efficiency and performance of the new ...

متن کامل

The Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model

This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...

متن کامل

adaptive neural network method for consensus tracking of high-order mimo nonlinear multi-agent systems

this paper is concerned with the consensus tracking problem of high order mimo nonlinear multi-agent systems. the agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. the communication network topology of agents is assumed to be a fixed undirected graph. a distributed adaptive control method is proposed to solve the consensus problem utilizing re...

متن کامل

New Operational Matrices for Solving Fractional Differential Equations on the Half-Line

In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of fractional derivatives and fractional integration are derived. These operational matrices are used together with spectral tau method for solving linear fractional differential equations (FDEs) of order ν (0 < ν < 1) on the half line. An upper bound of the absolute errors is obtained for the approximate and ...

متن کامل

Computational method based on triangular operational matrices for solving nonlinear stochastic differential equations

In this article, a new numerical method based on triangular functions for solving  nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of numerical analysis and optimization

جلد ۴، شماره ۲، صفحات ۴۳-۰

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023